This article was downloaded by: On: 27 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK

To cite this Article van de Mark, M. R. and Scornavacca, A. M.(1981) 'THE ELECTROCHEMICAL OXIDATIVE HYDROLYSIS OF KETONE OXIMES', Organic Preparations and Procedures International, 13: 6, 395 — 399 To link to this Article: DOI: 10.1080/00304948109356150 URL: <http://dx.doi.org/10.1080/00304948109356150>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use:<http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE ELECTROCHEMICAL OXIDATIVE HYDROLYSIS OF KETONE OXIMES

M. R. Van De Mark* and A. M. Scornavacca Department of **C** hemistry, University of Miami Coral Gables, Florida 33124

Recent findings on the ability of oxime dianions to direct alkylation with both regio- and stereochemical control has made oximes significant and potentially versatile synthetic intermediates.¹ Existing methodologies for regeneration of the carbonyl are somewhat limited. 2 We now report an anodic oxidative technique for the transformation ofoximes to the ketone in good yield.

The transformation was accomplished by oxidation of the oxime at a graphite anode (and cathode) in a one compartment cell containing acetonitrile and water. Tetraethylammonium tetrafluoroborate was the supporting electrolyte. Table I illustrates the effect of solvent composition and current density on the yield of ketone. As the water content of the solvent increases the yield of the ketone increased. At low current densities **(<500mA),** the yield is also much higher. These observations are readily explained by the fact that the anodic process generates an acidic region which can either cause the Beckman (or abnormal) rearrangement or simply result in protonation of the oxime thus precluding its oxidation.

During electrolysis of the oximee, a faint blue color developed and remained throughout the work-up. However, upon distillation of the ketone, the color disappeared. The blue color is probably due to traces of a nitroso compound which may be an intermediate in the reaction (Scheme I). Iffland and Criner³ as well as Kropf and Lambeck⁴ have reported that the oxidation of oximes (such as cyclohexanone oxime) with lead tetraacetate produces the nitrosoacetate, a deep blue compound.

³⁹⁵@ **1981** by **Organic** Preparations and Procedures **Inc.**

a. 5g Cyclohexanone oxime in 150ml solvent containing 2g electrolyte at ten degrees. b. Acetonitrile to water ratio. c. Current shown is per 15 cm^2 electrode area.

SCHEME I

A brief survey of several aliphatic ketones demonstrates the versatility of the reaction (Table **11).** There is the possibility of acid-catalyzed Beckman rearrangement of the oximes. As is to be expected, the proton concentration near the surface of the electrode is a function of the current density, of the solvents ability to transport the proton to the cathode where it is reduced to hydrogen and of the stirring rate. Since the Beckman rearrangement usually requires a long contact time or elevated temperatures, the acidity near the electrode surface need not be eliminated only minimized. If the current density **is** maintained below 30mA/cm2 and the solvent is either buffered or the percentage of water maintained at 20%, the acidity will be minimized near the electrode. By careful choice of

396

conditions the oximes can be maintained soluble in the media and rearrangement minimized or suppressed.

TABLE 11.

a. of electrolyte at 10". **b.** Current shown **is** in amps/15cm2 electrode area. Five grams of oxime in 15Oml **20%** aqueous acetonitrile containing **2** grams

The electrochemical oxidation of camphor (I) represents a good example of the effect of acid generated by the anode. It is well known that camphor oxime is susceptible to acid-catalyzed abnormal Beckman.⁵ The reaction leads predominatly to the two **nitriles** shown below. The anodic oxidation produced compounds **I1** and **111** in equal amounts with a total

conversion of **38%.** *Also* recovered starting material accounted for an additional **27%.** The remaining material was unidentified due to the complexity. Compounds **I1** and **I11** under the electrolysis conditions are electroactive and would undergo oxidation analogously to those demonstrated by Shono with the oxidation of a variety of olefins.6 Therefore the low yield of **I1** and **111** may be due to further oxidation which would yield several new products. It should be noted that the conversion and ratio of products **11** and **111** are quite irreproducible unlike the yield of ketone.

The electrochemical oxidative removal of the oxime group appears to be a viable alternative to the current methodology. Its assets are the high

397

yield, especially for linear or high molecular weight species, the low cost (very limited expenditures required since only a controlled current power supply is required) and finally the ease of work-up with no metal salts to remove.

EXPERIMENTAL

Power supply was either an EICO Model 1020 (0-36V, 0-0.2A) or Trygon Electronics Model RS60-7.5 (0-60V, 0-7.5A). A simple 12V battery charger is also sufficient. carbon rods available from Ultra Carbon Corporation (Cat. No. 731254/ ST-50). Electrolyte, tetraethylammonium tetrafluoroborate was obtained from Southwestern Analytical Chemicals. Acetonitrile was obtained from Burdic & Jackson and distilled from phopsphorous pentoxide. All ketones were AR grade and used without further purification. Oximes were prepared by standard procedures. Graphite electrodes were 0.25" diameter Spectro Tech

Electrolysis were performed in a 250ml electrolytic beaker 8 with 150ml of solution containing **2** grams (0.01 mole) tetraethylammonium tetrafluoroborate as supporting electrolyte. Five grams of the oxime were added and stirred magnetically. **Two** graphite electrodes were mounted in a rubber stopper $1 \frac{1}{2}$ " apart and 3 " into the solution (a vent hole was also required to avoid pressure build-up).

After passage of the requisite current, integrated with an Acromag Counter or a copper coulombmeter, the solution was concentrated by distillation to 50ml. Addition of 50ml water and extraction with four 50ml portions of ether, drying over sodium sulfate and concentration in vacuo yielded the crude ketones.

Analysis by gas chromatography produced the data shown in Tables I and **11.** Distillation followed by **2,4-dinitrophenylhydrazone** derivatization yielded results consistent with the GC data. Matching infrared and proton nuclear magnetic resonance spectra were observed for all products with respect to authentic materials.

Acknowledgements.- We thank J.-P. Anselme for helpful discussions and the University of Miami for financial support for this work.

REFERENCES

- 1. a) M. E. Jung, P. A. Blair and J. A. Lowe, Tetrahedron Lett., 1439 (1976).
	- b) R. E. Lyle, J. E. Saavedra, G. G. Lyle, H. M. Fribush and J. L. Marshall, ibid., 4431 (1976).
	- c) R. E. Lyle, H. M. Fribush, G. G. Lyle, J. E. Saavedra, J. Org. Chem., 43, 1275 (1978).
- 2. I. T. Harrison and S. Harrison, "Compendium of Organic Synthetic Methods", Vol. I, Wiley-Interscience, New York, N.Y., 1971, p. 454.
- 3. a) D. **C.** Iffland and **G.** X. Criner, Chem. and Ind., 176 (1956).
	- b) D. C. Iffland and G. X. Criner, M. Koral, F. J. Lotspelch. **Z.** B. Papanastassopi and S. M. White, J. Am. Chem. SOC., *75,* 4044 (1953).
	- c) D. C. Iffland and G. X. Criner, ibid., 75, 4047 (1953).
- 4. H. Kropf and R. Lambeck, Ann., *700,* 18 (1966).
- 5. L. G. Donaruma and W. Z. Heldt, Org. Reactions, Vol. 11, John Wiley & Sons, New York, 1960, p. 1.
- 6. T. Shono and A. Ikeda, J. Am. Chem. Soc., 90, 178 (1972).
- 7. R. L. Shriner, R. **C.** Fuson and D. Y. Curtin, "The Systematic Identification of Organic Compounds", 5th Ed., John Wiley & Sons, New York, N.Y., 1964.
- 8. Electrolytic beakers, tall form beakers, are available from Kimble (14070).

(Received September 23, **1980; in revised form May 29, 1981)**